

Atmospheric Iron-Based Coal Direct Chemical Looping Process for Power Production: Phase II

Pittsburgh, PA. August 12, 2016

Project Objectives

- Phase I Project objectives: 2012 -2013
 - Evaluate commercial viability of OSU's coal-direct chemical looping process for power production with CO₂ capture.
 - Perform a techno-economic evaluation of the commercial design.
- Phase II Project Objectives: 2013-2017
 - Conducting laboratory testing and small pilot-scale testing to reduce technology gaps identified in Phase I.
 - Update design and cost performance of the commercial 550 MWe CDCL power plant
 - Re-evaluate the CDCL technology and identify development pathway for commercialization in year 2025.

Project Participants

- Federal Agencies:
 - DOE/NETL

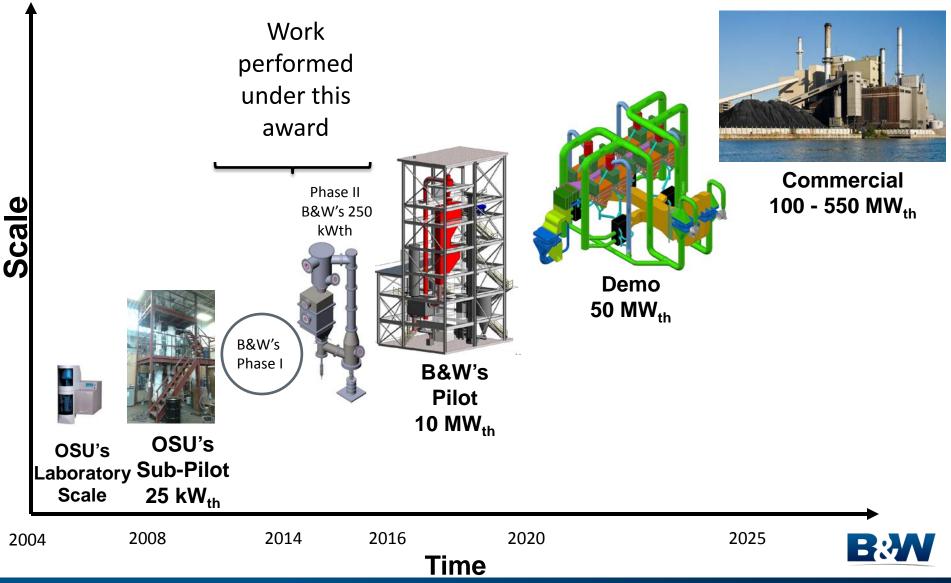
State Agency:

- Ohio Development Service Agency
- Project participants:
 - The Babcock & Wilcox
 - The Ohio State University
 - Clear Skies Consulting

Industrial Review Committee:

- American Electric Power
- Dayton Power & Light
- Dover Light & Power
- Duke Energy
- First Energy
- Consol Energy

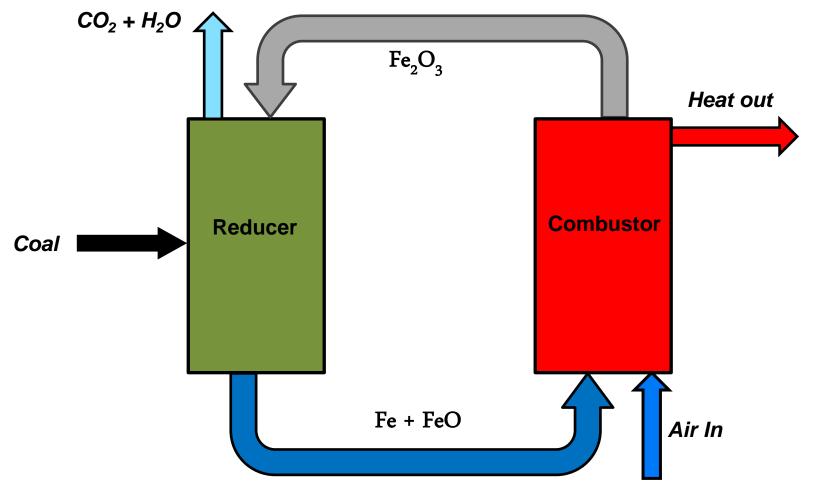
CONSOL ENERGY



Commercialization Path

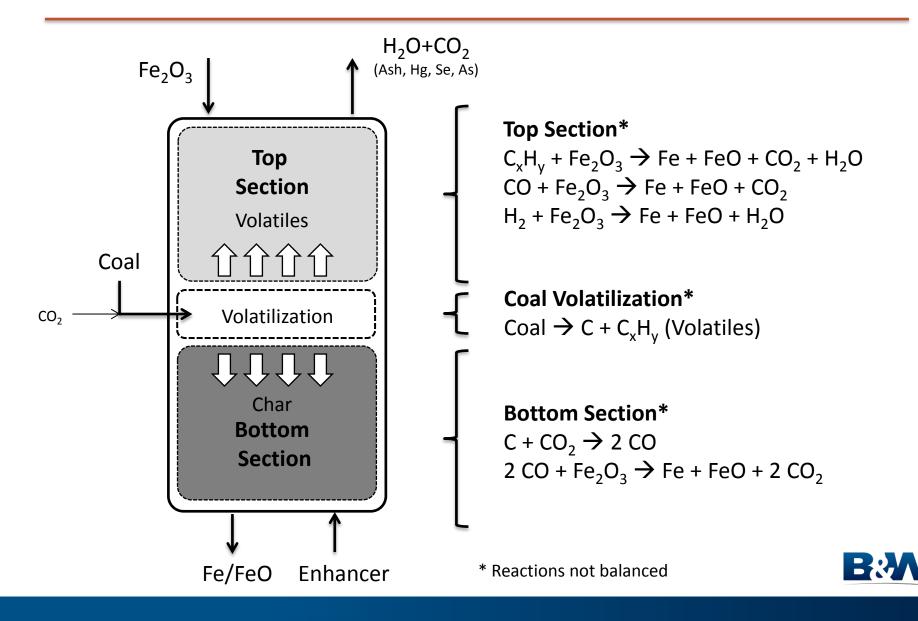
- Phase I: CDCL Concept and Techno-Economic Analysis
- ➢Phase I: Technology Gaps
- Phase II-A: Laboratory Testing and Studies
- ➢ Phase II-B: 250 kWth Pilot Design and Construction
- Project Schedule
- Conclusions and Acknowledgments

Commercialization Path

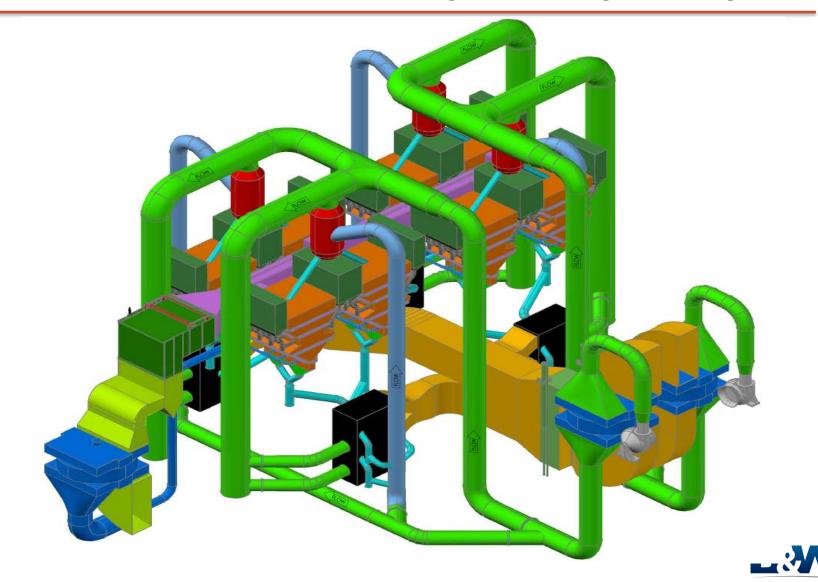

Commercialization Path

Phase I: CDCL Concept and Techno-Economic Analysis

- ➢Phase I: Technology Gaps
- Phase II-A: Laboratory Testing and Studies
- ➢ Phase II-B: 250 kWth Pilot Design and Construction
- Project Schedule
- Conclusions and Acknowledgments



Chemical Looping Concept



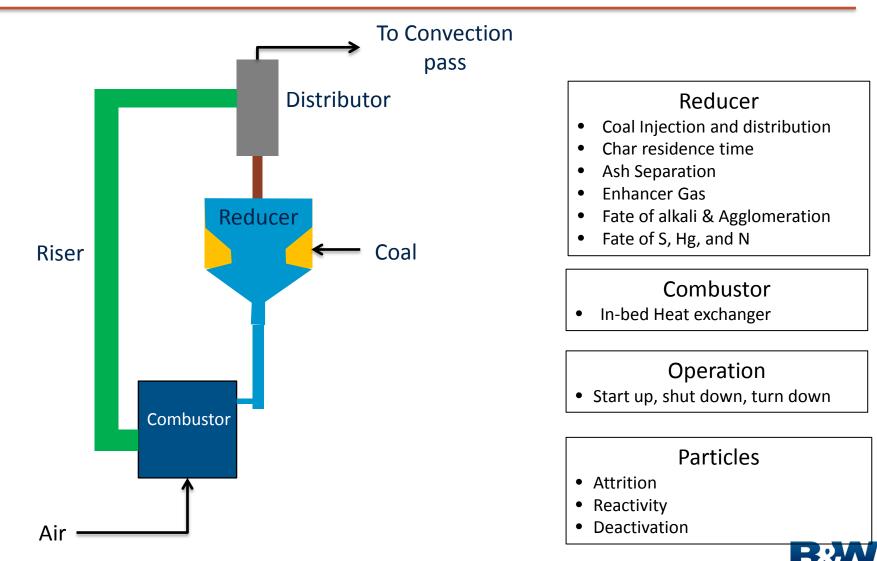
CDCL Moving Bed Reactor Concept

CDCL Commercial Plant Design and Engineering

CDCL Technology Comparison

	Base Plant	MEA Plant	CDCL Plant
Coal Feed, kg/h	185,759	256,652	205,358
CO ₂ Emissions, kg/MWh _{net}	801	111	31
CO ₂ Capture Efficiency, %	0	90	96.5
Net Power Output, MW _e	550	550	550
Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)	9,165 (8,687)	12,663 (12,002)	10,084 (9,558)
Net Plant HHV Efficiency, %	39.3	28.5	35.6
Cost of Electricity, \$/MWh	80.96	132.56	102.67
Increase in Cost of Electricity, %	-	63.7	26.8

Commercialization Path


Phase I: CDCL Concept and Techno-Economic Analysis

Phase I: Technology Gaps

- Phase II-A: Laboratory Testing and Studies
- Phase II-B: 250 kWth Pilot Design and Construction
- Project Schedule
- Conclusions and Acknowledgments

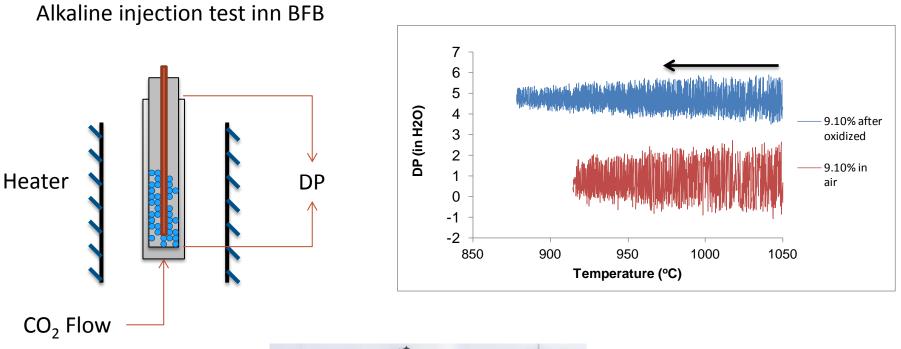
Technology Gap Analysis

Commercialization Path

Phase I: CDCL Concept and Techno-Economic Analysis

Phase I: Technology Gaps

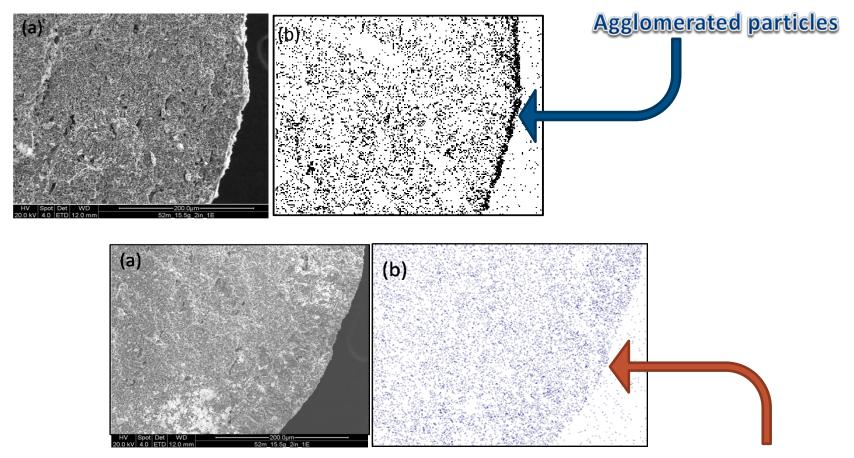
Phase II-A: Laboratory Testing and Studies


Phase II-B: 250 kWth Pilot Design and Construction

Project Schedule

Conclusions and Acknowledgments

Alkaline Agglomeration Test



Particles aglomerate at very high alkaline content : ~9.1wt.%

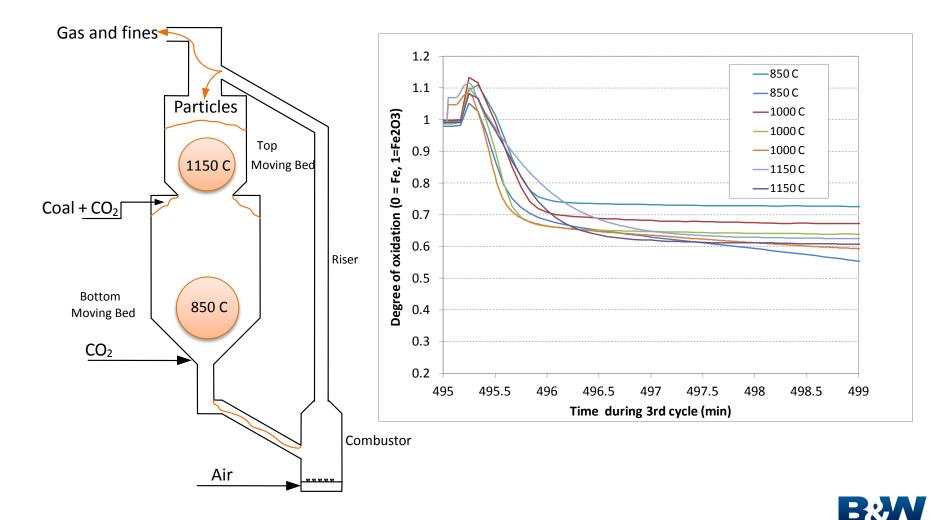
Paraticle Regeneration

Agglomerated particle caused by alkaline can be regenerated in the combustor.

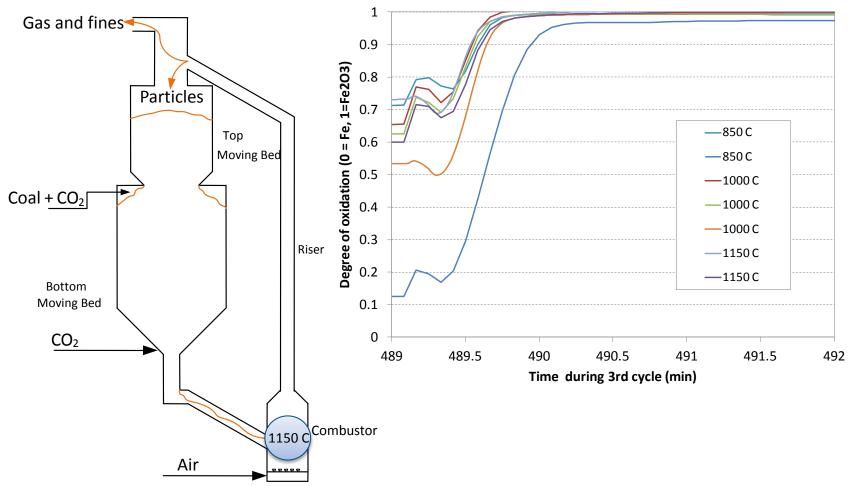
Regenerated particles

Particle Characterization

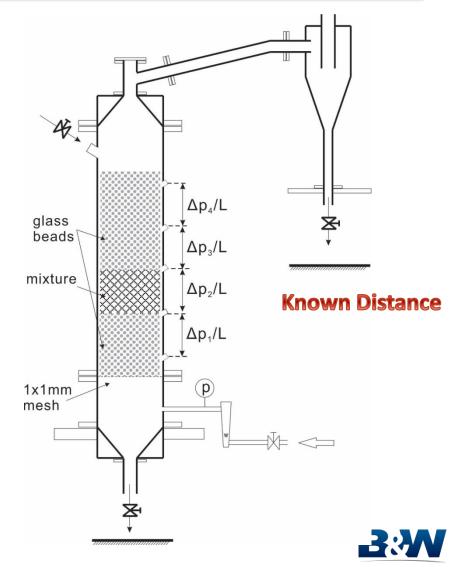
Photograph of TGA Analyzer

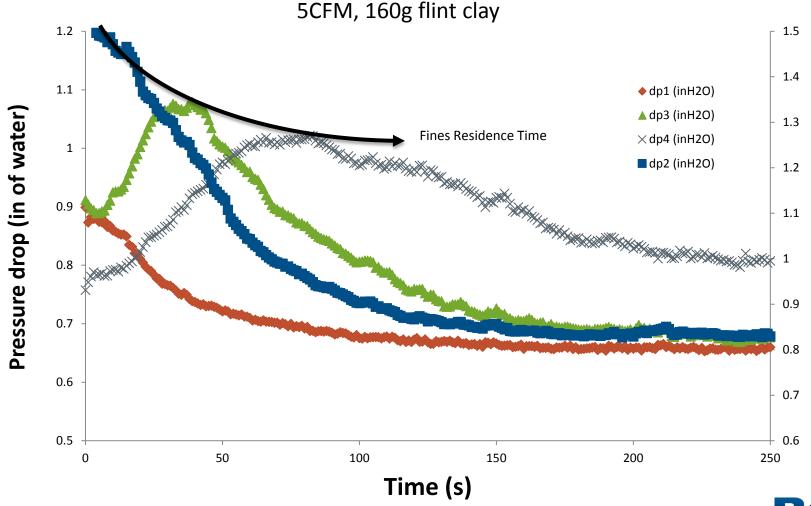

Gas Delivery System

36.00 particles 100 cycles 1200 C 35.50 35.00 34.50 **M M (mg)** 34.00 33.50 33.00 32.50 32.00 31.50 200 400 600 800 0 1000 1200 Time (min)


Recyclability Test

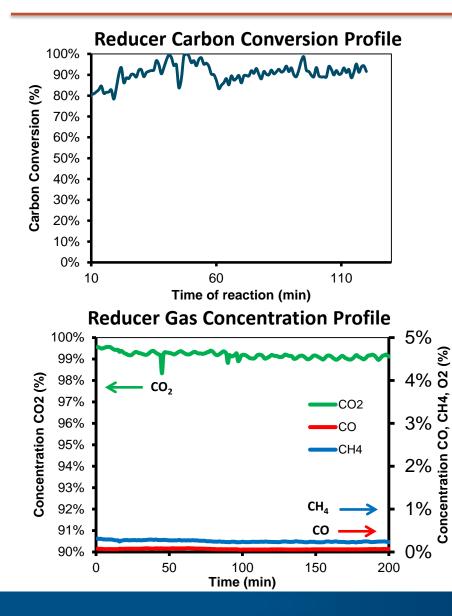
Particle Reduction Studies

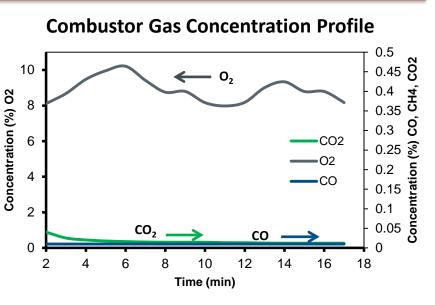

Particle Oxidation Studies



Coal Flow Model Tests: Fines entrainment

Char & Ash Residence Time in Moving Bed


B:M


25 kW_{th} Sub-Pilot Demonstration

- > 800 hours of operational experience
- > 200 hours continuous successful operation
- Smooth solids circulation
- Complete ash separation in reducer.
- Achieve nearly pure CO₂ from reducer outlet
- 17 test campaigns completed

200-hour Sub-Pilot Continuous CDCL Demonstration

- Sample Data: PRB Process Performance
- Continuous steady carbon conversion from reducer throughout all solid fuel loading (5- 25kWth)
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO and CO₂ in combustor = negligible carbon carry over, nearly 100% carbon capture

Commercialization Path

Phase I: CDCL Concept and Techno-Economic Analysis

➢Phase I: Technology Gaps

Phase II-A: Laboratory Testing and Studies

Phase II-B: 250 kWth Pilot Design and Construction

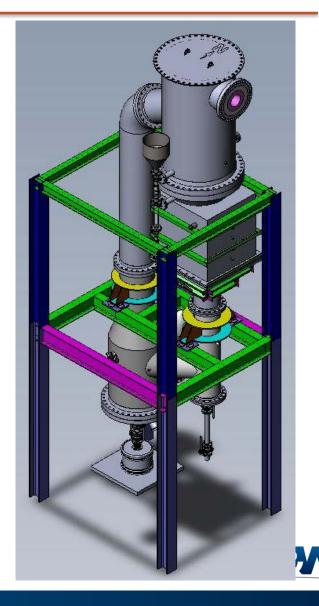
- Project Schedule
- Conclusions and Acknowledgments

Pilot Unit Design

Physical Specifications

Materials: Refractory lined Carbon Steel
Overall Height: 32 ft

•Footprint = 20' x 20'


Process Specifications

•Thermal rating: 250 kWth

- •Coal Feed Rate: 70 lb/hr
- •Coal size: Pulverized coal
- •Max Operating Temperature: 2012 °F
- •Oxygen Carrier: Iron based
- •Reducer : Counter-current moving bed
- •Combustor : Bubbling bed
- Particle tranport: Pneumatic

Oxygen Carrier Specifications

•Active metal: Iron based •Size: 1.5 mm

Commercialization Path

Phase I: CDCL Concept and Techno-Economic Analysis

➢Phase I: Technology Gaps

Phase II-A: Laboratory Testing and Studies

Phase II-B: 250 kWth Pilot Design and Construction

Project Schedule

Conclusions and Acknowledgments

Project Schedule

Phase II		2015									2016													2017												
- Flase II	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11 1	2
Task 1. Project Management and Planning																																				
Project Management and Planning																																				
Task 2. Laboratory Testing																																				
Large Scale Particle Manufacturing																																				
Oxygen Carrier (Particle) Characterization																																				
Task 3. Pilot Facility Design, Construction and																																				
Testing																																				
Pilot Plant Facility Design																																				
Test Facility Cost Estimate																																				
Pilot Plant Facility Construction																																				
Pilot Plant Facility Commissioning & Testing																																				
Task 4.Data Analysis and Update of																																				
Commercial Plant Economic Analysis																																				
Data Reduction and Analysis																																				
Commercial Plant Design and Cost Analysis																																				
Update Next Scale Pilot Plant Design																																				
Task 5. Phase II Final Report																																				
Final Report and Close out Documents																																				

Commercialization Path

- Phase I: CDCL Concept and Techno-Economic Analysis
- ➢Phase I: Technology Gaps
- Phase II-A: Laboratory Testing and Studies
- ➢ Phase II-B: 250 kWth Pilot Design and Construction
- Project Schedule

Conclusions and Acknowledgments

Conclusions

- CDCL offers a cost-effective alternative for coalbased power generation with carbon capture
- The commercial CDCL modular design is ideal for commercial deployment of the technology
- Cold flow model and laboratory testing is confirming assumptions and design features of the 250 kWth pilot unit and the commercial design
- The design of 250 kWth pilot plant has been completed, the unit is under construction and we are moving soon towards the comissioning and testing phase

Acknowledgments

This material is based upon work supported by the Department of Energy under Award Number DE-FE0009761 and The Ohio Coal Development Office under Award Number OER-CDO-D-15-02.

